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It is well-known that non-uniform voltages in induction accelerator gaps can lead to longitudinal 

emittance growth, which in turn limits pulse length on target. We show that this source of emittance 

growth is correctable, even in space charge dominated beams with significant transients induced by 

space charge waves. Two correction methods are proposed, and their efficacy in reducing longitudinal 

emittance is demonstrated with three dimensional Particle-In-Cell (PIC) simulations. 

 

I. INTRODUCTION 

Longitudinal emittance is a key beam parameter for 

Heavy Ion Fusion (HIF) since it determines the final 

bunch length of an ion beam for ignition [Ref. 1]. Beams 

of short bunch length of 10 nanoseconds or less are 

required for ignition at target [Ref. 2], the precise bunch 

length and pulse shape being dependent on details of 

target designs. For some advanced designs (e.g. for fast 

ignition), much shorter bunches are required. For many 

applications in High Energy Density Physics, a short 

bunch length is also desired. The final length 

requirements imply that the longitudinal emittance 

growth must be carefully managed from source to target. 

 

The growth of longitudinal emittance has several complex 

sources such as the finite temperature and imperfect beam 

extraction from sources, head-to-tail nonlinearities and 

other nonlinear space charge effects, as well as voltage 

non-uniformities in induction linear accelerators. In 

particular, we will show that longitudinal emittance 

increases significantly in multi-gap accelerators, in which 

small fluctuations of individual gap voltages can 

aggregate over many gaps to give a large value, leading 

eventually to an unacceptably large growth of 

longitudinal emittance. 

 

Longitudinal emittance z  is a quantity that measures 

beam quality [Ref. 3] and is most directly related to beam 

pulse length, while the normalized longitudinal emittance 

zn  is defined by a multiplication of a factor  . When 

there are no other external applied forces, zn  is 

conserved upon accelerations of beams. 
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*Work by one author (JJB) performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at LLNL.
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  is taken as 1 since only non-relativistic beams are 

considered throughout the paper. Also, z  is the 

position of particle relative to beam center and zv  is 

the z-component of the particle velocity relative to the 

overall velocity. 

 

As a beam is extracted from the source, the beam density 

profile is assumed to be uniform while the velocity profile 

has a tiny spread due to thermal temperature T at the 

source which can be approximated by the equipartition 
theorem. The longitudinal emittance at the source ,zn s  

is 
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and 0zz v   by assuming axisymmetric beam 

distribution. Also 2
zL v , where   is the pulse 

duration at source. 

 
Generally, ,zn s  is very small in value as compared to 

emittance growth resulting from voltage non-unformities. 

In terms of pulse duration  , beam energy T  and 

the fractional variation in voltage  in an injector, zn  

[Ref. 1] can be written as 

 4
zn T

m c
   . (4) 

On the basis of Eq. (4), it has been argued that the pulse 

length at an HIF injector must be limited. This is of 

course untrue if this source of emittance growth can be 

corrected. Effect of multiple non-uniform gap voltages on 

longitudinal emittance is discussed in this paper and two 

techniques are presented to reduce the growth of 

longitudinal emittance by the intermittent application of 

correction voltages. Our objective is to remove velocity 

as well as density fluctuations arising from voltage 

non-uniformities inherent in the accelerating gaps. The 

correction scheme is particularly non-trivial for 

space-charge dominated beams, on account of space 

charge waves which propagate with time. We show by a 

combination of analyses and simulations with the 3-D 

PIC code WARP that significant reduction in longitudinal 

emittance can be achieved. 

 

 

II. EFFECT OF NON-UNIFORM VOLTAGE ON zn  

Since zn  should be conserved upon acceleration of 

beams, we show simulation results in three different 

scenarios to provide self-consistency checks for the code, 

as well as the basis for comparisons with subsequent 

calculations. 

 

A. Coasting of an unperturbed beam 

A Rubidium beam, 2 MeV, 2.7 microseconds long, and 

0.02 mA, passed through a single constant voltage gap 

and then coasted inside of a pipe. In Fig. 1, a big bump of 

zn  was observed over the first few microseconds 

because the beam was in transit through the gap, and a 

big velocity difference existed between the front and rear 

parts of the beam. Apart from the bump, zn  remained 

nearly constant at 63.2 10  pi-m-rad throughout the 
coasting, and so zn  due to the thermal temperature at 

source is conserved. 

 



 
FIG. 1. ( )zn t  evaluated for the whole beam, 

which was passed through a constant voltage gap. 

 

B. Coasting of a velocity-tilted beam 

A Rubidium beam, 2 MeV and of 0.02 mA, with a 10% 

velocity tilt 
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applied at the time of particle loading, coasted inside a 

pipe. The pulse length changed continually with time. 

However, according to Liouville’s Theorem, zn  must 

be conserved throughout coasting due to the conservation 

of phase space area. This conservation property of zn  

is verified in Fig. 2, in which zn  is represented by blue 

circles that fall on the red curve. 

 

 
FIG. 2. ( )zn t  evaluated for the whole beam: (1) 

the curve of blue circles represents a beam coasting with 

10% velocity tilt; (2) the red curve represents a beam 

passing through a constant voltage gap. 

C. Effect of many constant voltage gaps 

A Rubidium beam, 2 MeV and of 0.02 mA, was passed 

through many constant voltage gaps. The unnormalized 

emittance continues to decrease with acceleration, but 

zn  is unaffected by any changes of beam velocity. In 

Fig. 3(a), zn  of beams after a constant voltage gap and 

after 10 constant voltage gaps coincide with the same flat 

line as 63.2 10  pi-m-rad verifying that zn  is not 

affected by acceleration of beams. Meanwhile in Fig. 3(b), 

z  was dropped by  times because the beam 

velocity was just doubled due to accelerations by 10 gaps 

. 

 

 
FIG. 3(a). ( )zn t  evaluated for the whole beam: (1) 

the red curve represents a beam passing through a single 

constant gap; (2) the black curve represents a beam 

passing through 10 constant voltage gaps. 

 

 



 
FIG. 3(b). ( )z t  evaluated for the whole beam: (1) 

red curve represents a beam passing through a single 

constant gap; (2) black curve represents a beam passing 

through 10 constant voltage gaps. 

 

D. Effect of non-uniform voltage gap 

We now begin the study of non-uniformity of gap voltage 

with a gap model of simple sinusoidal variations as errors. 

Suppose 0  is the desired constant voltage over a 

gap,   is the amplitude of variation, and

 2 /n n    is a particular frequency of the 

voltage error. 

 

 0( ) sin( )nt t      . (6) 

 0( ) sin( )z z z nv z v v k z  . (7) 

 

Here 0/ 2 /n n zk v n L   , 0zz v t , 0zL v  , and 

0 0/ 2z zv v    . Assume the beam has a uniform line 

charge density 0  such that 
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Therefore, 
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In Fig. 4, a Rubidium beam, 2 MeV and of 0.02 mA, was 

passed through a rippled gap with different errors in two 

separate simulations. For a 0.2% gap error, the analytic 

,zn r  after the gap was 52.23 10 pi-m-rad, which was 

about 75% of the simulation value. For a 1% gap error, 

zn  showed an increase of 5 times that of a 0.2% gap 

error and it is reasonable since equation (9) shows that the 
analytic ,zn r  is linearly dependent on the amplitude of 

variation of voltage. 

 

 
FIG. 4. ( )zn t  evaluated for the whole beam: (1) a 

gap with 1% error; (2) a gap with 0.2% errors. 

 

In general, the growth of zn  could be huge as the beam 

continues to pass through many rippled gaps. Because of 

the random nature of voltage fluctuations, the overall 

effect on the beam velocity is zv , zn  will keep on 

growing in a way similar to random walk. In Fig. 5, 

zn was plotted against the number of rippled gaps and 

zn  was shown increasing with the number of gaps in a 

square root relation which is similar to a random walk. 



 

 
FIG. 5. ( )zn t evaluated for the whole beam, 

corresponding to a beam passing through different 

number of rippled gaps. 

 

 

III. ONE-STEP CORRECTION 

To correct for the growth of longitudinal emittance 

caused by voltage non-uniformity in gaps, the first idea is 

simply to measure and to remove velocity ripples directly 

by imposing an opposite voltage to flatten the velocity 

profile. This ‘one-step correction’ was implemented 

according to the following setup in WARP simulations. 

 

 
FIG. 6. Setup for one-step correction. Here D is the 

position of the velocity diagnostic and C is the position of 

the velocity correction. 

 

For the purpose of this paper, we assume that a precise 

diagnostic for the energy profile exists. (We will show in 

a separate paper that a non-invasive energy diagnostic is 

in fact possible at any nonrelativistic energy.) The beam 

kinetic energy is measured at position D, and the 

corresponding beam velocity profile at position C is 

calculated via the static time of flight according to 

velocity data from D to C. To remove all velocity ripples, 

an opposite velocity waveform is generated at position C 

by applying the corresponding correction voltage. In this 

scheme, the density ripples at D remain uncorrected. 

 

 

FIG. 7. Kinetic energy of the beam at position D. 

 

 

FIG. 8. Correction voltage applied at position C. 

 

As an example, Fig. 7 was the kinetic energy profile 

detected at D, while Fig. 8 was the correction voltage 

applied at position C to remove the velocity ripples. 

Consequently, a significant reduction of zn  was 

observed in Fig. 9 after the one-step correction from 
512.79 10 pi-m-rad to 63.226 10 pi-m-rad, a value 

which is very close to the original value before the 

emittance growth. 

 



 
FIG. 9. Reduction of zn  after the application of 

correction voltage: (1) black curve represents a beam 

without correction voltage applied; (2) red curve 

represents a beam with correction voltage applied. 

 

A. Criteria for one-step correction 

The question we would next address is how often the 

correction has to be performed in a multi-gap LINAC. 

Particle over-taking is the main concern determining the 

success of one-step correction for low current beams, in 

which space-charge waves are weak. The critical 

downstream distance before particle over-taking based on 

a sinusoidal pulse is derived here. 

 

 
FIG. 10. Diagram of particle over-taking in 

 zv z phase space. 

 

Suppose a beam has a uniform longitudinal particle 

distribution and a velocity perturbation in sinusoidal 

waveform with width L, which is represented by blue dots 

in Fig. 10. Within the velocity pulse, N particles are 

uniformly located and they are labeled by index n.  
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Therefore, the critical downstream distance is 

 0z

m

v
z

f P
  . (14) 

For example, a Rubidium beam, 2 MeV and 0.02 mA, 

was passed through a series of gaps at interval of 0.72 m; 

each gap provides energy  0.1 2 MeV for 

accelerations but each gap voltage also has sinusoidal 

perturbations with magnitude 0.001 2 MeV and were 

composed of different modes (m = 1, 2, …, 10), i.e. 

corresponding ripple frequencies vary from 0.37 to 3.7 

MHz. In these examples, particle over taking appeared 

after 70 gaps meaning that this is the longest interval to 

install the next one-step correction. 

 



 

FIG. 11(a).  vz-z phase space after 50 gaps. 

 

FIG. 11(b).  vz-z phase space after 70 gaps. 

  

FIG. 12.  vz-z phase space after 75 gaps.  

 

 

B. Space-charge dominated beam at high current 

Actually, one-step correction would be less effective in 

space-charge dominated beams at high current due to 

evolution of space-charge waves, leading to substantial 

growing ripples in both density and velocity profiles. 

One-step correction assuming static time of flights of 

velocity profile over 7 cm in course of simulations could 

be inaccurate if velocity ripples evolve. This evolution 

actually happens to a high current beam. In addition, 

growing density ripples were not removed in this 

correction method. Fig. 13 compares the difference of  

zn  after one-step correction for low current beam — 

0.02 mA (blue curve) and the high current beam — 0.02 

A (red curve). Clearly, longitudinal emittance is not well 

suppressed by one-step correction for a high current beam 

so zn  was found to increase very soon after correction. 

 

 

FIG. 13. Comparison of one-step corrections between 

low and high current beams: (1) black curve represents 

the low current beam, 0.02 mA; (2) red curve represents 

the high current beam, 0.02 A. 

 

Besides the evolution of space charge waves, head-to-tail 

nonlinear space-charge effects also account for a 

significant growth of longitudinal emittance. (See the 

comparison in Fig. 14.) The big velocity difference 

between the head and the tail of a beam due to 

space-charge can be quite big. The effect of head-to-tail 

non-linearity [Ref. 4] is not the focus of this paper, and 



can be avoided by adding ‘ear fields’ to keep the head and 

tail at constant energy over time. Unless specified, all 

following simulations will have ear fields. 

 

 
FIG. 14. ( )zn t  evaluated for the whole beam: (1) 

red curve represents high current 0.2 A; (2) black curve 

represents low current 0.2 mA. 

 

 

IV. TWO-STEP CORRECTION 

 

A. General evolution of space-charge waves 

To trace the dynamics of velocity and density waves, the 

general evolution of space-charge waves was derived here 

based on weak perturbations of 1-D fluid model [Ref. 5, 6 

and 7]. Obtained wave solutions for velocity and density 

waves were used to compute the required correction 

voltages that help to remove all ripples in both velocity 

and density profiles. The general idea of two-step 

correction is discussed in the following section B and the 

terms of “ripples” and “waves” are used interchangeably 

in the following text. 

 

Consider continuity and momentum equations the in 

z-direction 
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 is the line charge density, q is the ion charge, m is the 

ion mass and zE  is the longitudinal self-electric field, 

which is approximated by 

 zE g
z


 


, (16) 

where 
0

1 ln( / )
2

g b a
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b/a is the ratio of the pipe radius to the mean beam radius 

and g is the g-factor. By substituting 0 1z zv v v  ,      

0 1    , and taking the first order approximation, 

thus the wave equation for the density ripple is obtained, 

where the space-charge wave speed is denoted by sc . The solution  

of velocity wave 1v  can be obtained by considering 

equation (15a) after solving for 1 . 
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The Subscript 0 represents equilibrium value while the 

subscript 1 represents the perturbed part of that quantity. 

t’ and z’ are measured in beam frames but lab frames are 

used in following text. The general wave solution is a pair 

of a forward-moving wave  and a backward-moving 

wave   and they are solved by acquiring well-posed 

boundary conditions. General wave solutions are 
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Denote voltages by  0 1    , 
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At 0z  , let the boundary conditions to be 
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On solving   and   gives 
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Define phase factors 
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B. Principle of two-step correction 
Knowing the complete solutions of 1  and 1v is 

particularly important since they allow us to predict their 

waveform at any time and position. With this knowledge, 

we can apply “correction voltages” to generate “opposite 

waveforms” that lead to zero fluctuations in their profiles. 

This technique is called the two-step correction because 

two correction voltages are applied separately at two 

different positions. 

 

Our simulation exercise was generated as follows: a beam 

was first loaded without any disturbance in both density 

and velocity profiles; then it was passed through the first 

gap 0 ( )f t , which serves as the source of voltage 

fluctuations. The first step is done by applying a specified 

voltage 1( )f t at 1z to generate an another density wave 

that exactly cancel the one generated by 0 ( )f t  at 2z . 

Consequently, the overall density wave is now made to be 

zero right at 2z . At the same time, the second step is 

done by applying of a specified voltage 2 ( )f t  at 2z  to 

generate an another velocity wave that exactly cancel the 

one generated by 0 ( )f t and 1( )f t  at 2z . Therefore, zero 

fluctuations for both 1  and 1v  is achieved for all time 

after position 2z , resulting in an effective reduction of 

zn  for space-charge dominated beams. 

 

 

 
FIG. 15. Setup for two-step correction. 

 

 

C. Solving voltage 0 ( )f t for density ripples correction 

Knowing the waveform of correction voltages is the key 

part of this two-step correction technique.  

 

At 0z  the boundaries take the following form 
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When 1( )f t  is absent and the density wave at 2z  is 
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When  is present and the density wave at  becomes 
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Notice that the application of voltage 1( )f t  leads to 

generation of an another density wave 1( )F t , but this 

voltage 1( )f t  is specially designed in a way that zero 

density fluctuation at 2z  results i.e.: 

 

 1 2

0 2 1 2 1

( , ) 0
( , ) ( , ) 0

t z
F t z F t z z

 
   

. (24) 

 

Therefore, the above condition constrains the allowed 

form of 1( )f t  at 1z . To solve for 1( )f t , expand 1( )f t  

into a Fourier series 

 1( ) ni t
n

n

f t c e 




  , (25) 

here 2
n

n
T


   and T is the pulse life. 

 

On solving the lower of Eq. (24), the required nc  can be 

found:  
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 



    
           







. (26) 

 

D. Solving voltage  for velocity ripples correction 

Since 1( )f t  is now known and the overall velocity 

waves generated by 0 ( )f t  and 1( )f t  are given by: 

 

0 2 2
1 0 0

0 0
( , )

4
z

z s z s

v z zv t z f t f t
v c v c

    
       
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    
       

     
. (27) 

 

Therefore, the velocity wave  can be removed 

by applying the corresponding opposite voltage  in the 

same way as in one-step correction,  

 

 1 2
2

0

( , )( ) 2
z

v t zf t
v

   . (28) 

E. Simulation parameters 

The two-step correction scheme can be investigated via 

WARP simulations of a Rb beam with the following beam 

parameters. 

 

Table I Summary of beam parameters [Ref. 8, 9, 10, 11] 

Ion species: Rubidium (charged +1) 

Current: 20 mA 

KE: 2 MeV 

Un-normalized transverse emittance: 52 mm m-rad 

Mean beam radius: 0.016 m 

 

 

In simulations, the source of voltage fluctuations 0 ( )f t  

is modeled by 
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2 2( ) sin cosn nn

n nf t t t
T T
 

 


         
    .(29) 

 

Here   is a normalization factor to make the value of 

root-mean-square of 0 ( )f t  close to 0.1% of the beam 

energy. We further assume the waveform of 0 ( )f t  is 

known and detectable. Because of the special purpose of 

the voltage 1( )f t  to achieve zero density fluctuation 

at 2z , we call this voltage as the Density Error Correction 

voltage (DEC). Similarly, because of the purpose of 

voltage 2 ( )f t  to achieve zero velocity fluctuation at 2z , 

we call this voltage the Velocity Error Correction (VEC). 

 

1. Result of DEC at 2z  

Fig. 16 showed a line charge density profile ( )t  at 2z : 

(1) The blue curve represented the ( )t of a beam 

without any corrections, in which density ripples were 

found. (2)  The red curve represented the ( )t  of a 

beam with the application of the DEC voltage at 1z  but 



density ripples were removed effectively by the 

application of 1( )f t . 

 

 
FIG. 16. Result of DEC at 2z . (See text for explanation 

of red and blue curves) 

 

2. Result of VEC at 2 0.72z m  

Fig. 17 shows the profile of the velocity  

at 2 0.72z m : (1) The blue curve represented a beam 

after DEC at 1z  and velocity ripples were found. (2) The 

red curve represented a beam after DEC at 1z  and VEC 

at 2z  but velocity ripples were removed effectively 

removed. 

 

 

FIG. 17. Result of VEC at 2 0.72z m  

 

3. Result of reduction of zn  

Based on Fig. 16 and Fig. 17, we can see clearly how 

density ripples and velocity ripples were removed by 

two-step corrections, as a result, the growth of 

longitudinal emittance is suppressed. Fig. 18 is the zn  

of three beams: (1) The blue curve represented the zn  

of a beam after one-step correction. (2) The red curve 

represented the zn  of a beam after two-step correction. 

(3) The black curve represented a beam without any 

corrections. Clearly, the beam without corrections showed 

a huge increase of zn  after passing through the first 

gap 0 ( )f t . Although both one-step and two-step 

corrections lead to similar amount of reduction in zn , a 

big advantage of two-step correction is that the zn  will 

not grow again after 2z  for all time and this was 

understood because the density fluctuation is suppressed 

by 1( )f t . 

 

 
FIG. 18(a). one-step v.s. two-step corrections. 

 

 

FIG. 18(b). A bigger view of Fig. 18(a). 

 



 

 

V. Conclusion 

We show that whenever energy and current profiles are 

measured after a series of gaps by non-invasive means, 

space-charge waves are traced completely and 

perturbations in velocity and density profiles can be 

removed by applications of designated voltages. 

Therefore, both techniques of one-step and two-step 

corrections succeed to reduce zn significantly even in 

space-charge dominated beams, implying that the 

fundamental limit on pulse length at source can be 

relaxed in near term as well as driver-scale experiments 

of Heavy Ion Fusion. In addition, these correction 

techniques can be extended for high energy density 

physics and other intense beam applications whenever 

non-uniform voltages appear. 
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